¿Qué es la duración modificada?
La duración modificada es una fórmula que expresa el cambio medible en el valor de un valor en respuesta a un cambio en las tasas de interés. La duración modificada sigue el concepto de que las tasas de interés y los precios de los bonos se mueven en direcciones opuestas. Esta fórmula se usa para determinar el efecto que un cambio de 100 puntos básicos (1 por ciento) en las tasas de interés tendrá sobre el precio de un bono. Calculado como:
Duración modificada = 1 + nYTM Duración de Macauley donde: Duración de Macauley = vencimiento a plazo medio ponderado de los flujos de efectivo de un bonoYTM = rendimiento hasta el vencimienton = número de períodos de cupones por año
DESGLOSE Duración modificada
La duración modificada mide el plazo promedio ponderado en efectivo hasta el vencimiento de un bono. Es un número muy importante que los gerentes de cartera, los asesores financieros y los clientes deben tener en cuenta al seleccionar inversiones porque, al igual que todos los demás factores de riesgo, los bonos con mayor duración tienen mayor volatilidad de precios que los bonos con menor duración. Existen muchos tipos de duración, y todos los componentes de un bono, como su precio, cupón, fecha de vencimiento y tasas de interés, se utilizan para calcular la duración.
Cálculo de duración modificada
La duración modificada es una extensión de algo llamado la duración de Macaulay, que permite a los inversores medir la sensibilidad de un bono a los cambios en las tasas de interés. Para calcular la duración modificada, primero debe calcularse la duración de Macaulay. La fórmula para la duración de Macaulay es:
Macauley Duración = Precio de mercado del bono∑t = 1n (PV × CF) × T donde: PV × CF = valor presente del cupón en el período tT = tiempo para cada flujo de caja en añosn = número de períodos de cupón por año
Aquí, (PV) (CF) es el valor presente de un cupón en el período ty T es igual al tiempo de cada flujo de efectivo en años. Este cálculo se realiza y suma para el número de períodos hasta el vencimiento. Por ejemplo, suponga que un bono tiene un vencimiento a tres años, paga un cupón del 10% y que las tasas de interés son del 5 por ciento. Este bono, siguiendo la fórmula básica de fijación de precios de los bonos, tendría un precio de mercado de:
Precio de mercado = 1.05 $ 100 + 1.052 $ 100 + 1.053 $ 1, 100 Precio de mercado = $ 95.24 + $ 90.70 + $ 950.22 Precio de mercado = $ 1, 136.16
Luego, usando la fórmula de duración de Macaulay, la duración se calcula como:
Duración de Macauley = Duración de Macauley = Duración de Macauley = Duración de Macauley = ($ 95.24 × $ 1, 136.161) + ($ 90.70 × $ 1, 136.162) + ($ 950.22 × $ 1, 136.163) 2.753
Este resultado muestra que lleva 2.753 años recuperar el costo real del bono. Con este número, ahora es posible calcular la duración modificada.
Para encontrar la duración modificada, todo lo que un inversionista debe hacer es tomar la duración de Macaulay y dividirla entre 1 + (rendimiento hasta el vencimiento / número de períodos de cupones por año). En este ejemplo, ese cálculo sería:
Duración modificada = 11.05 2.753 = 2.621
Esto muestra que por cada movimiento de 1 por ciento en las tasas de interés, el bono en este ejemplo se movería inversamente en el precio en 2.621 por ciento.
Principios de duración
Aquí hay algunos principios de duración a tener en cuenta. Primero, a medida que aumenta la madurez, la duración aumenta y el bono se vuelve más volátil. Segundo, a medida que aumenta el cupón de un bono, su duración disminuye y el bono se vuelve menos volátil. En tercer lugar, a medida que aumentan las tasas de interés, la duración disminuye y la sensibilidad del bono a mayores aumentos de las tasas de interés disminuye.